
1. Introduction
Climate and circulation model simulations estimate climatological and environmental variables continu-
ously across space from the past to present and sometimes into the future. The continuous nature of these 
estimates provides valuable information that is essential for assessing the impacts of climatological and 
environmental changes. However, it is well known that these simulation outputs are often systematical-
ly biased relative to observations at spatial and temporal scales of interest, and require bias corrections 
before further use (Aung et  al.,  2016; Giorgi,  2019; Maraun,  2016; Shrestha et  al.,  2017; Teutschbein & 
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Seibert, 2013). While bias corrections are prevalent for model-simulated precipitation and surface air tem-
perature (e.g., Teutschbein & Seibert, 2013, Table 4), bias correction of simulated ocean variables such as 
bottom temperature and salinity has received far less attention, even though they are frequently used in 
ecological studies such as habitat suitability and species distribution modeling (e.g., Chang et  al.,  2010; 
Lowen et al., 2019; Tanaka et al., 2019).

Figures 1 and 2 show the biases of daily bottom temperature and salinity simulated using the Regional 
Ocean Modeling System (ROMS; Kang & Curchitser, 2013, 2015) aggregated by month from 1980 to 2015 in 
the Mid-Atlantic Bight, off the northeast coast of the United States, from Cape Hatteras (35°N) to Cape Cod 
(41.5°N). These biases can be strong and exhibit spatial and temporal autocorrelations. ROMS overestimat-
ed bottom temperatures in most of the Mid-Atlantic Bight shelf from January to May, but underestimated 
them in the northern inshore areas from June to November, and in the deep offshore areas throughout the 
year. For bottom salinity, ROMS underestimated the northern and overestimated the southern portions of 
the Mid-Atlantic Bight. The overestimation in the south was more intense from August to November.

Although ROMS captured the seasonal patterns reasonably well, it tended to overestimate bottom temper-
atures in the cooler months while underestimating them when bottom temperatures were warmer (Fig-
ure 3). The mean biases (MBs) can be as large as 2.1°C for bottom temperature and −0.4ppt for bottom sa-
linity. Spatial and temporal biases have also been documented for bottom temperatures simulated using the 
Finite-Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region (Li et al., 2017).
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Figure 1. Differences (ROMS − CTD) between ROMS simulated bottom temperature (°C) and CTD observations at each location where a CTD observation is 
available in the Mid-Atlantic Bight by month for years 1980–2015. n: number of data points by month.
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Several methods for bias correction of climate and circulation model simulation output have been devel-
oped in the fields of climatology, meteorology, and hydrology (Lazoglou et al., 2020). Some commonly used 
methods include various versions of scaling approaches, quantile mapping (QM), and copulas techniques. 
Scaling approaches and QM are based on statistical transformations to minimize the distributional differ-
ences between the simulated and observed data (Gudmundsson et al., 2012; Teutschbein & Seibert, 2012), 
whereas copulas are based on modeling the complex nonlinear correlation structure between variables 
(Mao et al., 2015).

The performance of these established methods has been assessed by many studies (e.g., J. Chen et al., 2013; 
Gudmundsson et al., 2012; Gutiérrez et al., 2019; Lafon et al., 2013; Mao et al., 2015; Maraun et al., 2019; 
Mendez et al., 2020; Shrestha et al., 2017; Teutschbein & Seibert, 2012). Some have argued that simple meth-
ods such as delta method and linear scaling performed comparably to the more sophisticated QM (Mendez 
et al., 2020; Shrestha et al., 2017), while others showed that the higher-skill bias correction methods outper-
formed the simpler ones. All of these methods are capable of reducing the mean systematic model biases 
to a certain degree; however, they are much less efficient in reducing spatial-temporal patterns in the biases 
and thus fail to correct the spatial-temporal variability of the model simulation output (Maraun et al., 2019). 
None of the above methods explicitly adjust for the spatial-temporal aspects of the biases (Maraun, 2013; 
Maraun et  al.,  2019; Sunyer et  al.,  2015), despite the high degree of spatial-temporal autocorrelation of 
these biases, e.g., see Gudmundsson et al.  (2012), Figure 2, Mao et al.  (2015), Figures 10–12, and John-
son and Sharma (2012), Figure 1. Model simulation output with spatially and temporally autocorrelated 
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Figure 2. Differences (ROMS − CTD) between ROMS simulated bottom salinity (ppt) and CTD observations at each location where a CTD observation is 
available in the Mid-Atlantic Bight by month for years 1980–2015. n: number of data points by month.
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biases and underrepresented spatial-temporal variability may especially be an issue for analyses that utilize 
the spatial-temporal patterns of the simulation output, such as habitat suitability and species distribution 
modeling.

The purpose of this study is to propose using the geostatistical method of regression kriging (RK; equivalent 
to universal kriging or kriging with external drift) for bias correction. RK is a spatial interpolation technique 
that models non-stationary trends using (generalized) regression, and then takes into account the spatial 
dependencies of the regression residuals using ordinary kriging (OK). RK has been used in a variety of dis-
ciplines and has proven effective in terms of modeling non-stationary and spatially autocorrelated objects 
(Chang et al., 2017; Hengl, 2009; Webster & Oliver, 2007). Unlike many bias correction methods that directly 
estimate the relationships between model-simulated output and observations, we use RK to estimate the 
“bias” across space and time. We then use these spatial-temporal bias estimates to correct the original model 
simulation output. We expect that if RK can properly estimate the spatial-temporal biases, after the RK bias 
correction, the errors between model simulation output and observations should be reduced, and no longer 
show systematic spatial or temporal patterns.

Most of the commonly used criteria for evaluating bias correction techniques are focused on reducing root 
mean square error (RMSE) or mean absolute bias (MAB), matching the statistical moments, or maximizing 
the correlations between observed and simulated variables (Gudmundsson et al.,  2012). However, these 
criteria can be problematic because they do not take into account the spatial structure of the errors (Wernli 
et al., 2008). For example, a bias correction that resulted in strong spatial patterns in errors would be evalu-
ated as equal to one that lacks such patterns but has similar overall mean error levels. Ideally, the errors of 
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Figure 3. Boxplot and its means (diamonds) of observed CTD and ROMS simulated bottom temperature (°C) and salinity (ppt) and their differences (i.e., 
Bias = ROMS − CTD) in the Mid-Atlantic Bight by month for years 1980–2015. Black dots are data outside 1.5 times the inter-quartile range.
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the bias-corrected model simulation output should be spatially random. Thus, the model evaluation criteria 
should include a measure of the extent of spatial randomness of the errors.

Several methods have been developed to evaluate structural differences in spatial characteristics such as SAL, 
a complex validation diagnostic that considers the structure, amplitude, and location (Wernli et al., 2008), 
VALUE, a comprehensive validation framework that examines many indices including spatial characteris-
tics such as decorrelation length and variogram range (Maraun et al., 2015), and structure scores of wavelet 
transformed fields to capture the characteristics of field's spatial structures (Buschow et al., 2019). These 
methods use one or several scores to evaluate the structural differences, while other sources of errors are 
investigated separately. This may make it difficult to evaluate and rate the overall performance when a 
trade-off between reducing the overall errors and increasing the spatial similarities occurs.

Here, we introduce a simple yet informative metric, the Structural Similarity (SSIM) index, for evaluating 
the performance of bias correction methods. This index was originally developed to assess image quality by 
quantifying the differences between signals from distorted and reference images, and can simultaneously 
consider accuracy, precision, and spatial similarities (Wang et al., 2004). It is appropriate for evaluation of 
bias correction methods because the fields we examined here are similar to the natural images where pixels 
are highly structured and exhibit strong spatial dependencies (Wang et al., 2004). The SSIM index is used in 
this study to compare the accuracy, precision, and spatial similarities of the observations and bias-corrected 
model simulation output, which is analogous to comparing two different image signals.

In this study, we compared the performance of RK to two other bias-correcting methods: OK, which is 
based on an assumption of spatial stationarity, and also the most popular QM method. These bias correction 
methods are used to correct the biases of the ROMS simulated bottom temperature and salinity we present-
ed in Figures 1 and 2. The performance of these bias correction methods were evaluated using SSIM as well 
as other standard measures such as RMSE and MAB.

The remainder of the paper is organized as follows: Section 2 introduces the example observations and mod-
el simulation output that were used for bias corrections, the theory and configurations of the RK bias cor-
rection models, and the SSIM index for model evaluations. Section 3 presents the evaluation of RK models 
using SSIM index along with other evaluation criteria, results of applying the RK bias corrections to model 
simulation output, and comparison of performances of RK models to the QM method. Section 4 discusses 
the advantages, limitations, and possible extensions of the RK methods and SSIM index for bias corrections; 
and the conclusions are summarized in Section 5.

2. Materials and Methods
2.1. Observed and Simulated Data

Hindcasts from the regional circulation model ROMS in the northwest Atlantic were used as the exam-
ple for the bias-correction methods (Z. Chen & Curchitser, 2020; Z. Chen et al., 2018; Kang & Curchits-
er, 2013, 2015). The simulation output includes daily temperature, salinity, and other oceanographic vari-
ables from the Gulf of Mexico to the Gulf of St. Lawrence for years 1980–2015. The model grid has a 7 km 
horizontal spacing and 40 vertical terrains from the ocean surface to the bottom. Further details of model 
settings including the initial and oceanic boundary forcing, surface forcing, vertical mixing scheme, river 
discharges, tides, etc., are described in Kang and Curchitser (2013, 2015) and Z. Chen et al. (2018). This 
study focused on the bottom temperature and salinity in the Mid-Atlantic Bight (latitude: 35°N-41.5°N; 
longitude: 70°W-76°W; depth: 10–160 m).

We compared the ROMS simulated daily bottom temperature and salinity in the Mid-Atlantic Bight to the 
nearest bottom temperature and salinity observation from CTD casts in the NOAA/NEFSC Oceanography 
Branch Hydrographic Database. Only the CTD records that were within the ROMS prediction grid and 
where the depth of the CTD observation was within 10% or ±5 m of the bottom depth at the corresponding 
ROMS prediction point were used for comparison to the ROMS simulations. A total of 11,474 bottom tem-
perature and 11,216 bottom salinity CTD casts met these criteria and were used in this study. The discrep-
ancies between the observed CTD and ROMS simulated bottom temperature and salinity were assumed to 
be due to biases from the ROMS simulations.
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2.2. Kriging Methods

Because the discrepancies between the observed CTD and ROMS output are spatially autocorrelated, we 
used the spatial interpolation technique of kriging to bias-correct the ROMS simulation output. Three krig-
ing methods were evaluated: OK and two RK methods, Generalized Additive Models (GAMs; Hastie & Tib-
shirani, 1990; Wood, 2017) with kriged model residuals, and Generalized Additive Mixed Models (GAMMs; 
Zuur et al., 2009) with kriged model residuals. OK is the standard version of kriging with the following 
spatially stationarity assumptions (Cressie, 1986; Matheron, 1962). Let z(t) be the observed value (one real-
ization) of a stochastic process (random variable) Z(t) over a domain D in R2. The intrinsic hypothesis for 
OK is:

  [ ( ) ( )] 0,E Z t h Z t (1)

    [ ( ) ( )] 2 ( ) , ,Var Z t h Z t h t t h D (2)

where t is index over space, h is distance, and 2γ(h) = 2[C(0) − C(h)] is the variogram with C(h) = cov-
(Z(t + h), Z(t)) (Matheron, 1962). Equation 1 expresses the assumption that the mean (E) is constant regard-
less of the location in D (spatial stationarity), whereas Equation 2 implies that the variance and covariance 
depends solely on the relative position (distance) of the variables Z(t + h) and Z(t) (Cressie, 1986).

RK extends OK to account for non-stationary trends in the mean over D (Hengl, 2009; Webster & Oliver, 2007):


  

1
[ ( )] ( ),

k

i i
i

E Z t a b Y t (3)

where a and b are unknown constants and k is the number of external variables Yi(t). The non-station-
ary mean is estimated using (generalized) regression models with external variables, after which OK is 
performed on the model residuals to estimate spatially autocorrelated variability (Hengl,  2009; Odeh 
et al., 1995). Here, we used GAM(M)s (with Gaussian distributions) as the RK regression models. GAMs 
extend the assumption underlying generalized linear models, that the relationship between the mean of the 
response variable and covariates is linear, to allow for nonlinear relationships estimated using smoothed 
function(s) of the predictors (Hastie & Tibshirani, 1990; Wood, 2017):


  

1
[ ( )] [ ( )],

k

i i
i

E Z t a s Y t (4)

where the bi in Equation 3 is replaced by non-parametric smoothed functions si estimated from the data. 
Because of the flexible nature of this curve, GAMs can deal with highly nonlinear relationships between 
the response variable and covariates, and the shape of these relationships can be determined by data instead 
of the researcher's preconceptions (Guisan et al., 2002). However, GAMs are based on an assumption that 
model residuals are independent, which is unlikely to be true for our data. GAMMs use random effects 
to account for such autocorrelated errors in model predictions (Zuur et  al.,  2009). Our implementation 
of GAMMs employed random effects for data within a 0.5° spatial grid to account for small-scale spatial 
autocorrelation:




     ,
1

( , ) [ ( , )] ,
k

i i g g t
i

Z g t a s Y g t  (5)

where g is spatial grid index, νg is the random effect at spatial grid g, and ϵg,t is the individual-specific random 
error. Both νg and ϵg,t follow normal distributions with mean zero. The size of the spatial grid for the random 
effect was determined by selecting a size that is large enough so that there are sufficient data in the grid cells 
and small enough so that the data within each grid cell are similar. We ran sensitivity analysis by testing var-
ious grid sizes (0.25°, 0.75°, and 1°) for the GAMM random effect scale and compared their performances.
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2.3. Model Configurations

We evaluated combinations of various response and explanatory variables to construct the regression mod-

els. Raw bias (ROMS − CTD) and relative bias (
ROMS CTD

CTD
) were tested as response variables. Explan-

atory variables included year, month, and different combinations of depth, latitude, distance offshore, and 
ROMS simulated bottom temperature or salinity (Table 1). Year and month were used to account for the 
temporal autocorrelation of the biases within the modeling period. Depth and distance offshore were used 
to delineate potential east-west effect on the biases, whereas latitude was used for the north-south effect. We 
included ROMS simulated bottom temperature or salinity as an explanatory variable for constraining the 
bias correction model so that it is not completely free of the original spatial and temporal patterns simulat-
ed by the ROMS, and to account for biases being correlated with their original values. Depth and distance 
offshore variables were never in the same regression model because they were both used to denote the 
east-west effect and are strongly autocorrelated (Table 1). Depth, distance offshore, and ROMS simulated 
variables were evaluated separately and not included in the same regression model as single terms to avoid 
strong correlations among the independent variables (Table 1).

For OK applied to the biases or model residuals, we tested four candidate variogram models: spherical, ex-
ponential, Gaussian, and Matérn, and selected the one with the smallest residual sum of squares (Hiemstra 
et al., 2009). Before performing OK, we also checked if the variability of the data is directionally dependent 
(anisotropic). If so, the coordinates of the anisotropic data were rotated and rescaled to a new coordinate 
system so that the data become statistically isotropic (E. Pebesma et al., 2011).

To capture the temporal differences in the biases, we built the regression and kriging models for the entire 
time series, partitioned either seasonally, bimonthly, or monthly, and evaluated the performances of these 
partition lengths. The monthly models are for OKs only because our data did not cover every year for each 
month, and therefore they are not enough to build monthly regressions. In summary, we examined three 
kriging methods, different combinations of response and explanatory variables, and various temporal pe-
riods for modeling; as a result, more than 800 model combinations were tested for bias correction. The 
above analyses were implemented in R statistical software (R Core Team, 2020) with libraries automap (E. 
J. Pebesma, 2004), intamap (Hiemstra et al., 2009), gstat (E. Pebesma et al., 2011), and mgcv (Wood, 2017).

2.4. QM Method

The QM we implemented here is described in Gudmundsson et al. (2012) as the nonparametric smoothing 
splines transformation approach, which has the highest skill to reduce systematic biases in their study. 
The observed CTD and ROMS output were aggregated into 100 quantiles to avoid overfitting. We then fit a 
smooth spline to the quantile-quantile relationship between the observed and simulated data and used the 
estimated spline smoother to adjust the distribution of the ROMS output to match the distribution of the 
CTD observations (Gudmundsson, 2016). The QM was performed monthly for the bottom temperature and 
salinity because of the differences in their CDFs by month. The QM analysis was implemented in R statisti-
cal software (R Core Team, 2020) using the qmap library (Gudmundsson, 2016).

2.5. Evaluation of Model Performance

We evaluated the performances of the RK methodologies primarily by using RMSE, the p-value of Moran's I 
statistic (MI), and the SSIM index, while also providing MAB, MB, and mean relative bias (MRB). RMSE is 
calculated as the square root of the mean of the squared residuals (i.e., differences) between observed CTD 
and (bias-corrected) ROMS output. It is one of the most widely used metrics for accuracy and precision, but 
it does not measure whether there are spatial patterns in the residuals. MI is used to measure the degree of 
spatial autocorrelations in the residuals. Low MI values indicated high spatial autocorrelations. However, 
it does not measure overall accuracy or precision. The SSIM index is used in this study to concurrently 
examine the accuracy, precision, and spatial similarities of the (bias-corrected) ROMS output as compared 
to the CTD observations. The SSIM index separately but simultaneously compares the differences between 
the “image” signals' mean, variance, and correlations to represent “luminescence” (l), “contrast” (c), and 
“structural information” (s), respectively:
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where x and y are “image” signals, which for our purposes are observed 
CTD data and (bias-corrected) ROMS output, μx, μy, σx, σy, and σxy are 
their means, standard deviations, and covariance, and C1, C2, and C3 are 
small constants to avoid instability when the denominators are very close 
to zero. The SSIM index is the combination of the three components:

  ( , ) [ ( , )] [ ( , )] [ ( , )] ,S x y l x y c x y s x y (9)

where α, β, and γ are weights used to adjust the relative importance of 
the three components. Larger SSIM indices indicate close correspond-
ence between observations and the simulations. If the observed CTD and 
ROMS output are identical, the SSIM index is 1. A simplified version of 
SSIM was used for this study where α = β = γ = 1 and C1 = C2 = C3 = 0. 
The same weights were used for α, β, and γ so that the models selected 
using this SSIM have a balanced ability to produce accurate, precise, and 
spatially similar model estimates relative to data.

Ten-fold cross-validation was used to obtain the performance statistics 
such as RMSE, MI, and SSIM. Data from all years were randomly parti-
tioned into 10 sets. One set was left out for testing and validating, while 
the rest were used for training the model. This procedure was iterated 10 

times. Model predictions from the 10 testing sets were used to calculate the performance statistics. All the 
performance statistics were calculated by month for each year and then averaged to represent the overall 
performance of each model.

3. Results
3.1. Performance Statistics

The SSIM index was highly correlated with both RMSE and MI, whereas the relationship between RMSE 
and MI was less clear (Figure 4). The model with the highest MI, and hence lowest spatial autocorrelation, 
had a poor overall fit, that is, high RMSE, for both temperature and salinity (Figure 4). Thus, there tends 
to be a trade-off between reducing spatial autocorrelation of the residuals and improving precision and 
accuracy of the models. The maximum SSIM tends to occur where RMSE is low, albeit not at its minimum, 
and MI is high, but not at its maximum (Figure 4), so it reflects both good precision and accuracy combined 
with low spatial autocorrelation.

3.2. Comparison of Kriging Methods and Model Configurations

The GAMM RK model had the highest SSIM score for both temperature and salinity with raw bias as the re-
sponse variable, and year, month, depth, and ROMS simulated variable/latitude interaction term as the ex-
planatory variables (Combination 14; Table 1). The bimonthly GAMM (R2: 0.41–0.67) with monthly kriged 
GAMM residuals performed the best for bias-correcting temperature, whereas the seasonal GAMM (R2: 
0.49–0.66) with monthly kriged GAMM residuals were the best for bias-correcting salinity.
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Combination Explanatory variables

1 Year; Month; Dist

2 Year; Month; Depth

3 Year; Month; ROMS

4 Year; Month; Lat

5 Year; Month; Dist; Lat

6 Year; Month; Depth; Lat

7 Year; Month; ROMS; Lat

8 Year; Month; (Dist/Lat)

9 Year; Month; (Depth/Lat)

10 Year; Month; (ROMS/Lat)

11 Year; Month; (ROMS/Depth)

12 Year; Month; (ROMS/Dist)

13 Year; Month; Dist; (ROMS/Lat)

14 Year; Month; Depth; (ROMS/Lat)

15 Year; Month; ROMS; (Dist/Lat)

16 Year; Month; ROMS; (Depth/Lat)

17 Year; Month; Lat; (ROMS/Dist)

18 Year; Month; Lat; (ROMS/Depth)

Note. Dist, distance offshore; ROMS, ROMS simulated bottom temperature 
or salinity; Lat, Latitude.

Table 1 
List of Combinations of Various Explanatory Variables Tested in the 
Regressions
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Among the kriging methods we tested, both the GAM and GAMM RK methods significantly outperformed 
the OK and the GAMM RK typically were slightly better than the GAM RK (Figure 5). Model configuration 
had strong impacts on the performance of bias correction models for temperature, but less so for salinity 
(Figure 5). Using raw bias as a response variable was better than relative bias; however, this has more in-
fluence on temperature than salinity (Figure 5). Of all the external variables tested in the regressions, the 
ROMS simulated variable (bottom temperature or salinity) was the most influential (Figure 5). The models 
that did not include ROMS simulated variable as a predictor have significantly lower SSIMs for both temper-
ature and salinity (Figures 4 and 5). Models with latitude or depth slightly outperformed the other models 
for both temperature and salinity (Figure 5). Shorter modeling periods (e.g., month) were better for bias-cor-
recting temperature, but the choice of modeling period had an insignificant impact on the bias correction 
of salinity (Figure 5). The performances of GAMMs were insensitive to the spatial grid size for the random 
effect scale and only slightly decreased with increasing grid size (Figure 6).

3.3. ROMS Bottom Temperature and Salinity

Table 2 summarizes the performance statistics before and after bias corrections for the ROMS simulated 
bottom temperatures and salinities. The original uncorrected biases, when averaged over space and time, 
were low to moderate. MAB, MB, and MRB were 2.07°C, 0.71°C, and 16% for temperature and 0.66 ppt, 
−0.12 ppt, and 0.004% for salinity, respectively (Table 2). However, the biases for both temperature and sa-
linity were strongly autocorrelated in space and time (Figures 1 and 2), as reflected by MI values that were 
close to zero for both temperature (0.1) and salinity (0.08; Table 2).
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Figure 4. Comparisons and Pearson correlation coefficients (ρ) between averaged RMSE, MI, and SSIM for all candidate models. The statistics of RK models 
with and without ROMS simulated bottom temperature (°C) or salinity (ppt) as a variable in the regression are circles in white and gray, respectively, whereas 
the QM models are triangles in red.
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The GAMM RK model significantly improved the precision and accuracy of the ROMS simulations by re-
ducing the MAB, MB, MRB, and RMSE by 44%, 100%, 83%, and 39% for temperature and 37%, 110%, 112%, 
and 35% for salinity, respectively (Table 2). MB and MRB were close to zero for both temperature and salin-
ity after the bias correction (Table 2). Mean and variation of the ROMS simulated bottom temperature and 
salinity after the GAMM RK bias correction were very close to the CTD observations (Table 2).

The GAMM RK method reduced spatial autocorrelation of the biases, with MI increasing by 68% and 146% 
for temperature and salinity, respectively (Table 2). It successfully removed the patchiness and structure 
of the biases, along with reducing their magnitude, as reflected by the improvement of the SSIM values 
for both temperature (29%) and salinity (14%; Table 2 and Figures 7 and 8). The temporal biases were also 
largely reduced, while the temporal temperature and salinity trend were maintained (Figures 9 and 10). 
However, the bias corrections were less effective around the inshore and offshore edge (shelf break) of the 
study area (Figures 7 and 8). We suspect that this is due to fewer CTD observations available in those areas.
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Figure 5. Boxplots and its means (open circles or triangles) of SSIM by model configurations (left panel) and RK regressions with (Yes) or without (No) 
variables including ROMS simulated variables, latitude, depth, and distance offshore (right panel) for bottom temperature (°C) and salinity (ppt). Black dots are 
data outside 1.5 times the inter-quartile range.
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Figures  11 and  12 show examples of averaged ROMS daily bottom temperature and salinity before and 
after the GAMM RK bias correction in the Mid-Atlantic Bight in March and September of 2015. The bias 
corrections increased the contrast of the temperature surface and reduced the contrast of the salinity sur-
face, while preserving the original patterns of the surfaces (Figures 11 and 12). Comparing the biases in 
Figures 1, 7 and 11, the GAMM RK model captured the over/underestimation of temperature in March and 
September well. The bias correction of salinity was not as successful as temperature. Although it effectively 
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Figure 6. Boxplots of SSIM by spatial grid size for the GAMM random effect scale for bottom temperature (°C) and salinity (ppt). Black dots are data outside 
1.5 times the inter-quartile range.
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Variable Statistics Original (O)

Bias-corrected (BC) (BC − O)/O × 100%

GAMM + OK QM GAMM + OK QM

Temperature Mean (CTD) 10.15 (0.22, 6.73–13.10) – – – –

Mean (ROMS) 10.86 (0.17, 8.86–13.44) 10.15 (0.19, 7.29–12.25) 10.15 (0.20, 7.63–13.05) −6.59 (7.54) −6.58 (14.50)

MAB 2.07 (0.09, 1.43–4.46) 1.16 (0.03, 0.87–1.55) 1.71 (0.08, 1.16–3.90) −43.74 (−63.05) −17.47 (−5.75)

MB 0.71 (0.14, −0.97 to 3.52) −0.00 (0.08, −0.85 to 0.91) −0.00 (0.13, −1.62 to 2.52) −100.27 (−45.17) −100.00 (−8.91)

MRB 0.16 (0.02, 0.01–0.53) 0.03 (0.01, −0.07 to 0.14) 0.03 (0.01, −0.12 to 0.31) −82.76 (−54.07) −81.49 (−24.83)

RMSE 0.43 (0.02, 0.27–1.14) 0.27 (0.01, 0.19–0.42) 0.38 (0.02, 0.26–1.02) −38.62 (−57.50) −12.24 (−5.95)

MI 0.10 (0.02, 0.00–0.53) 0.17 (0.02, 0.01–0.56) 0.09 (0.02, 0.00–0.39) 67.62 (18.80) −7.81 (−17.70)

SSIM 0.59 (0.02, 0.42–0.79) 0.77 (0.01, 0.60–0.88) 0.61 (0.02, 0.43–0.80) 29.04 (−28.47) 1.90 (5.18)

Salinity Mean (CTD) 33.12 (0.07, 32.22–33.77) – – – –

Mean (ROMS) 33.00 (0.07, 32.27–34.72) 33.13 (0.05, 32.32–33.67) 33.13 (0.07, 32.35–34.77) 0.41 (−24.66) 0.40 (−7.37)

MAB 0.66 (0.03, 0.39–1.37) 0.41 (0.01, 0.30–0.60) 0.58 (0.03, 0.38–1.35) −37.02 (−55.71) −11.30 (−2.10)

MB −0.12 (0.06, −0.72 to 1.21) 0.01 (0.04, −0.34 to 0.47) 0.01 (0.06, −0.57 to 1.25) −109.31 (−42.93) −106.86 (−2.65)

MRB −0.00 (0.00, −0.02 to 0.04) 0.00 (0.00, −0.01 to 0.01) 0.00 (0.00, −0.02 to 0.04) −111.97 (−45.64) −108.34 (−5.95)

RMSE 0.14 (0.01, 0.09–0.34) 0.09 (0.00, 0.06–0.14) 0.13 (0.01, 0.08–0.35) −34.70 (−56.22) −7.97 (2.69)

MI 0.08 (0.01, 0.00–0.24) 0.19 (0.02, 0.00–0.54) 0.08 (0.01, 0.00–0.29) 146.75 (97.98) 9.59 (−2.97)

SSIM 0.74 (0.02, 0.47–0.89) 0.84 (0.01, 0.62–0.94) 0.74 (0.02, 0.51–0.87) 13.82 (−37.86) 0.05 (−6.57)

Note. SE of the means of the CTD data and ROMS output are proportional to the deviation/variability of these means, but it is not a measure of the reliability 
of the underlying data.

Table 2 
Summary of Mean (SE, Minimum-Maximum) of the Monthly Observed CTD Means, Original, and Bias-Corrected Means, Performance Statistics, and Percent 
Change of the Performance Statistics' Mean (SE) of ROMS Simulated Bottom Temperature (°C) and Salinity (ppt) for Years 1980–2015
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corrected for the underestimated salinity in the northern Mid-Atlantic Bight, it did not fully correct for the 
overestimation of salinity in the south in March (Figures 2, 8 and 12).

3.4. QM Method

The QM technique of using smooth splines to transfer the quantiles performed well for both temperature 
and salinity with respect to averaged bias (Table 2 and Figure 13). The QM reduced MAB, MB, and MRB by 
18%, 100%, and 82% for temperature and 11%, 107%, and 108% for salinity, respectively, similar to the per-
formance of GAMM RK models (Table 2). Moreover, like the GAMM RK models, the mean and variation of 
QM bias-corrected bottom temperature and salinity were very close to the observations (Table 2). However, 
QM was not able to reduce the spatial-temporal autocorrelation and SE of the biases as well as RK. MI was 
worse (reduced 8%) after the QM bias correction for temperature (Table 2). The QM only improved SSIM 
by 2% for temperature and 0.05% for salinity, much less than most of the RK models (Table 2 and Figure 4).

4. Discussion
In this study, we identified spatiotemporal biases in the ROMS simulated bottom temperatures and sa-
linities for the Mid-Atlantic Bight, and corrected them using alternatively the OK, RK, and QM methods. 
Although both GAMM RK and QM effectively bias-corrected the overall mean and variation of temperature 
and salinity, only RK substantially reduced the spatial-temporal autocorrelation and SE of the biases, while 
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Figure 7. Differences (ROMS − CTD) between GAMM RK bias-corrected ROMS simulated bottom temperature (°C) and CTD observations at each location 
where a CTD observation is available in the Mid-Atlantic Bight by month for years 1980–2015. n: number of data points by month.
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at the same time preserving the original spatiotemporal patterns of the ROMS simulated bottom tempera-
ture and salinity surfaces.

The RK method decomposes the observed surface into large-scale trends and small-scale variations. The 
large-scale non-stationary trend is modeled using regressions, whereas the small-scale variation is modeled 
using OK on the regression residuals. Based on OK's intrinsic hypothesis (Equations 1 and 2), the small-
scale variation is assumed to be stationary, with its covariance depends only on distance between data 
points. By their construction, it would be expected that errors in climate and circulation models will be 
autocorrelated; this spatial autocorrelation can be captured by the OK variogram. Therefore, RK is suitable 
and effective for bias correction of climate and circulation model simulation output, especially when biases 
are highly spatially autocorrelated with non-stationary large-scale trends, as is often the case.

However, for RK to be effective, the OK stationary assumption for the regression residuals needs to be met. 
In other words, the chosen regression model needs to eliminate large-scale trends so that the remaining 
residuals are stationary. Violating the stationarity assumption may cause the estimation of the variogram 
to become unstable and reduce the effectiveness and predictive power of RK. For this reason, when OK is 
used directly without a regression model, it is only slightly better than the QM. The mean SSIM of all the 
tested OKs was 0.66 for temperature and 0.77 for salinity (Figure 5), whereas the SSIM for QM was 0.61 for 
temperature and 0.74 for salinity (Table 2). Mean performance of OK was also similar to the RK models that 
performed poorly, such as the RK models without ROMS simulated variables, which have mean SSIM 0.67 
for temperature and 0.76 for salinity (Figure 5).
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Figure 8. Differences (ROMS − CTD) between GAMM RK bias-corrected ROMS simulated bottom salinity (ppt) and CTD observations at each location where 
a CTD observation is available in the Mid-Atlantic Bight by month for years 1980–2015. n: number of data points by month.
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In RK, the large-scale variation can be modeled using any type of regression which can be chosen based on 
the characteristics of the target simulated variables. For example, when the target variable is zero-inflated 
and over-dispersed, such as often the case for precipitation, two-stage hurdle regressions can be used (e.g., 
Chang et al., 2017; Zuur et al., 2009).

A major advantage of RK is its ability to incorporate auxiliary information through covariates in the regres-
sion (Teutschbein & Seibert, 2012), so variables such as depth and month can be incorporated to inform 
the bias corrections. Covariates can also be used to constrain output so that the bias correction does not 
completely eliminate the spatiotemporal patterns from the climate and circulation models, which can be a 
concern when using RK because it explicitly adjusts the spatial-temporal structure of the target simulated 
variables (Cannon, 2016; Maraun, 2016; Maraun et al., 2019). The additional information from the external 
variables is also useful when estimating biases at the locations where there are few nearby observations.
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Figure 9. Boxplots of monthly mean, MAB, MB, and MRB of ROMS simulated bottom temperature (°C) and salinity 
(ppt) before and after bias corrections in the Mid-Atlantic Bight for years 1980–2015. Black dots are data outside 1.5 
times the inter-quartile range.
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In the three kriging methods, we modeled differences between observed and simulated bottom tempera-
ture and salinity, and then bias-corrected by adding the model estimates to the ROMS simulation output. 
Although this approach is logical since our main focus was to correct systematic biases in the climate and 
circulation model simulation output, it is possible that this process could produce values that are outside the 
reasonable range of target simulated variables. The same issue may occur for the QM method as well. We 
included the ROMS simulated variable (bottom temperature or salinity) as an explanatory variable in the 
RK regressions to indirectly constrain the bias estimates through their correlations. This had a substantial 
impact on model performance (Figure 5); the RK corrected temperature and salinity using that covariate 
were within reasonable ranges (Figure 9). Including the original target simulated variables in RK bias cor-
rection models is crucial, especially when the biases are directly modeled.
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Figure 10. Boxplots of monthly MI, RMSE, and SSIM of ROMS simulated bottom temperature (°C) and salinity (ppt) 
before and after bias corrections in the Mid-Atlantic Bight for years 1980–2015. Black dots are data outside 1.5 times the 
inter-quartile range.

ll

llll

ll

ll

ll

ll
ll

ll

ll

ll
ll

ll

ll

ll

ll

ll

ll
ll

ll

ll

ll
ll

ll

ll

ll

llll

ll

ll

ll

ll

ll

ll

ll

ll

ll

llll

ll

llll

ll

llll llll

ll

ll

ll

ll llll

ll

llll

ll

ll

ll

llll

ll

llll

ll

ll

ll

ll

ll

ll

ll

ll llll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

llll

ll
ll

ll llll

ll

ll

ll

ll
ll

ll

llll

ll

llll

llll

SSIM

RMSE

MI

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12
0.00

0.25

0.50

0.75

1.00

0

1

2

3

−0.5

0.0

0.5

1.0

Month

Temperature

ll

ll

ll

ll

ll

ll

ll

ll

ll
ll

ll

ll
ll

ll

ll

ll

ll

ll
ll

ll

ll

ll

ll

ll

ll

ll

llll

ll

ll

ll

llll

ll

ll

ll

ll

ll

llll

ll

ll

ll

ll

ll

ll
ll

ll

ll

ll

ll

ll

ll

ll

llll

ll

ll

ll

llll

ll

llllllll

ll

ll

ll

llll

ll

ll

ll

llll

ll

llllllll

ll

ll

ll

ll
llll

ll
ll
ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

llll

ll

ll

llll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

llll

ll

ll

ll

ll

ll

ll

ll

llll

ll

ll

ll

ll

ll

ll

ll

ll

llll

ll

ll

ll

ll

ll

ll

SSIM

RMSE

MI

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

1.00

Month

Salinity

Bias−corrected
GAMM+OK

Bias−corrected
Quantile Mapping Original



Journal of Geophysical Research: Oceans

CHANG ET AL.

10.1029/2020JC017140

16 of 20

Figure 11. Averaged ROMS simulated daily bottom temperature (°C) before and after GAMM RK bias corrections and their differences (BC-O) in the Mid-
Atlantic Bight in March and September of 2015.

Figure 12. Averaged ROMS simulated daily bottom salinity (ppt) before and after GAMM RK bias corrections and their differences (BC-O) in the Mid-Atlantic 
Bight in March and September of 2015.
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Spatial variability was modeled using covariates in the RK regression (explicitly as latitude or implicitly as 
depth or distance offshore), and in the kriging variogram for both RK and OK. Temporal variability was 
only accounted for in RK by using year and month as covariates in the regressions, and by estimating the 
regressions and OKs by temporal periods (entire time series, seasonal, bimonthly, or monthly). Although 
this approach eliminates much of the temporal trends in the biases, some small scale temporal variability 
remains (Figures 9 and 10). This potentially could be addressed using spatial-temporal kriging, which em-
ploys a variogram that is as a function of both space and time, while large-scale trends (if any) can still be 
estimated using regressions (Ruybal et al., 2019).

Although the RK method has many advantages, it is more complex, computationally intensive, and requires 
better data coverage than QM and other simple scaling approaches. The use of RK is especially important 
for applications such as habitat suitability or species distribution modeling that use fine-scale spatial-tem-
poral simulation output for their analyses. On the other hand, QM and some other simple scaling methods 
can robustly correct the (spatially aggregated) mean and variation of the target simulated variables (e.g., 
Lafon et al., 2013; Mendez et al., 2020; Shrestha et al., 2017; Sunyer et al., 2015), and can be used if only 
these quantities are of interest.
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Figure 13. Quantile-quantile plots of observed CTD and ROMS simulated bottom temperature (°C) and salinity (ppt) 
before (left panel) and after (right panel) QM bias corrections in the Mid-Atlantic Bight by month for years 1980–2015.
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While the RK method is effective in removing biases in hindcasts, it is also of interest to bias-correct the 
forecasts of future conditions from climate and circulation models. For forecasts, either the terminal year, 
or an average over the last several years, could be used in the year covariate in the regression for future 
years. Alternatively, it could be assumed that the temporal trends observed during the hindcast will extend 
into the future, although such extrapolations should be implemented with caution. These alternatives need 
to be evaluated carefully, and perhaps several approaches should be used to help understand a source of 
uncertainty.

Our results demonstrate that the SSIM index, which was originally developed for image quality assessment, 
can also be used for evaluation of bias correction methods, and is especially useful when spatial structure 
is of interest. Unlike other metrics such as RMSE and MI, SSIM can simultaneously account for the preci-
sion, accuracy, and spatial similarity of the biases. For example, models with the same RMSE but different 
spatial structure can be distinguished using SSIM (Figure 4). A number of variants of SSIM may also be 
useful, such as changing the values of α, β, and γ for highlighting one aspect over the others (Equation 9), or 
calculating SSIM within local windows with spatially varied weights to the mean, variance, and correlation 
coefficients, and then averaging the local SSIMs to get an overall SSIM measure (Wang et al., 2004).

5. Conclusions
We evaluated three types of kriging as well as a QM method for their abilities to bias-correct ocean circula-
tion model output. These methods performed similarly in correcting the mean and variation of the ROMS 
bottom temperature and salinity, but showed substantial differences in reducing the spatial-temporal auto-
correlation and SE of the biases. The GAMM RK method was found to be the best, and it can simultaneously 
reduce not only the overall mean and SE of the bias, but also its spatial-temporal autocorrelation. This 
method considerably improved the spatiotemporal similarity between the observed CTD and ROMS sim-
ulated bottom temperature and salinity. The RK approach is very flexible, and for that reason can be easily 
adapted to other climate and circulation model simulation output. This work has profound implications for 
studies that use the output from such a model for fine-scale mapping, for example, to identify physical char-
acteristics such as the cold pool in the Mid-Atlantic Bight (Z. Chen & Curchitser, 2020; Z. Chen et al., 2018) 
or to determine habitat suitability, species distribution, and the effects of climate change.

Data Availability Statement
The CTD bottom temperature and salinity data were downloaded from the NOAA/NEFSC Oceanography 
Branch Hydrographic Database: https://catalog.data.gov/dataset/oceanography-branch-hydrographic-da-
tabase. The original and bias-corrected ROMS daily bottom temperature and salinity simulations are avail-
able at: https://doi.org/10.6084/m9.figshare.14245796.
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